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A Robust Docking Strategy for a Mobile Robot
Using Flow Field Divergence
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Abstract—We present a robust strategy for docking a mobile
robot in close proximity with an upright surface using optical flow
field divergence and proportional feedback control. Unlike previ-
ous approaches, we achieve this without the need for explicit seg-
mentation of features in the image, and using complete gradient-
based optical flow estimation (i.e., no affine models) in the optical
flow computation. A key contribution is the development of an al-
gorithm to compute the flow field divergence, or time-to-contact,
in a manner that is robust to small rotations of the robot during
ego-motion. This is done by tracking the focus of expansion of the
flow field and using this to compensate for ego rotation of the im-
age. The control law used is a simple proportional feedback, using
the unfiltered flow field divergence as an input, for a dynamic ve-
hicle model. Closed-loop stability analysis of docking under the
proposed feedback is provided. Performance of the flow field di-
vergence algorithm is demonstrated using offboard natural image
sequences, and the performance of the closed-loop system is exper-
imentally demonstrated by control of a mobile robot approaching
a wall.

Index Terms—Focus of expansion (FOE), image motion analysis,
optical flow, robot vision systems, time-to-contact (TTC).

I. INTRODUCTION

DOCKING is an essential capability for any mobile robot
seeking to interact with objects in its environment. Tasks

such as plugging into a recharging station, pallet lifting, or trans-
porting goods on a factory floor are common tasks requiring
some form of docking manoeuvre to be performed. Of partic-
ular importance is the control of the robot’s deceleration to an
eventual halt, close enough to the object that the interaction
may take place while also avoiding collision. To achieve this,
the robot must acquire a robust estimation of time-to-contact
(TTC) (τ ), and control the robot’s velocity accordingly. The ac-
curacy and robustness of the τ -estimate is therefore crucial to
the stability, and safety of the robot in performing this task.
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Fig. 1. Diverging optical flow vectors and the FOE.

For a single, forward-facing camera approaching an upright
surface, a common method of estimating τ is to measure the
image expansion induced by the apparent motion of the surface
toward the camera. This can be obtained from the optical flow
field divergence. This image expansion, or looming effect, is
characterized by flow vectors diverging from a single point in
the image known as the focus of expansion (FOE), as shown in
Fig. 1. The use of visual motion to gauge τ is well supported by
observations in biological vision. Srinivasan et al. [19] observe
how honeybees use visual motion to decelerate and perform
smooth graze landings. Lee [6] theorized that a human driver
may visually control vehicle braking based on τ -estimation ob-
tained from image expansion.
Optical flow and flow divergence are commonly used to es-

timate τ for obstacle avoidance [1], [2], [12]. However, few
have applied optical flow to tasks requiring finer motion control
such as docking. Cipolla and Blake [2], for example, measure τ
using divergence computed from the temporal derivative of the
moments of area for a closed-contour region of the image. The
τ -estimator is shown to be sufficiently robust for closed-loop
control of collision avoidance onboard a camera-mounted robot
arm. However, the authors note that the performance degrades
significantly when in close proximity with the target surface due
to a breakdown of the assumed affine motion. Examples where
visual motion has been applied explicitly to docking include
Santos-Victor and Sandini [15], who apply an affine model of
image motion to obtain an approximation from normal flow
vectors. TTC is measured from the inverse of an affine flow pa-
rameter and used to control forward velocity while approaching
a planar docking surface. Questa et al. [13] also use an affine
approximation of flow, fromwhich theymeasure divergence and
calculate τ .

1552-3098/$25.00 © 2008 IEEE

Authorized licensed use limited to: Australian National University. Downloaded on March 11, 2009 at 21:00 from IEEE Xplore.  Restrictions apply.



MCCARTHY et al.: ROBUST DOCKING STRATEGY FOR A MOBILE ROBOT 833

An important drawback of these approaches is that all require
the explicit segmentation of the surface, and directly estimate
imagemotion from an assumed plane.Where closed-contour de-
formation is measured, there is also the problem of reliably find-
ing closed shapes when at close proximity with the surface [2].
An alternative approach is to compute τ from general optical

flow. Methods for estimating general optical flow fields from
local image regions, such as proposed by Lucas and Kanade [8],
require no a priori knowledge of scene structure, and therefore,
no segmentation. In general, for systems such as road vehi-
cles, optical flow is often used for other functions, such as a
general sensor for salience to detect moving hazards over the
whole scene, as well as for particular functions such as ob-
stacle detection. Affine approximations of image motion are
not adequate for this type of general use, and having multiple
methods for calculating flow is implausible on restricted em-
bedded hardware. A key requirement for a robust docking con-
trol is a τ -estimation algorithm based on general optical flow
computation.
In much of the previous work with divergence-based τ -

estimation, divergence is measured at the same image loca-
tion in each frame [1], [3], [12]. However, this ignores the
effect of FOE shifts on the divergence measure across the im-
age. Mobile robot ego-motion is rarely precise, and even where
only translational motion is intended, rotations will be present.
Small directional control adjustments, fluctuations in direction
due to steering control or differing motor outputs, bumps and
undulations along the ground surface, and noisy optical flow
estimation will all cause instantaneous, frame-to-frame rota-
tions of the robot. As such, the optical axis will be subject to
small rotations about the predominant direction of motion. As
a result, the FOE is unlikely to be fixed with respect to the
image center. Given such rotations are likely to be small with
respect to the robot’s forward motion, the predominant direc-
tion of motion should remain constant. Therefore, to ensure
consistency in τ -estimates over time, we argue that divergence
should be measured with respect to the FOE, and not the image
center.
Robustly estimating τ when the optical and translation axes

are not physically aligned has been examined previously. Sub-
barao [20] considers τ with surfaces of arbitrary orientation, for
a camera of arbitrary alignment with respect to the direction
of motion. However, Subbarao does not consider the effects of
instantaneous rotations during ego-motion, and therefore, as-
sumes that the point of interest lies along the camera’s optical
axis.While a fixation-based strategy such as that used by Questa
et al. [13] can keep the target point centered, a mobile robot is
unable to achieve this without additional hardware support. In
many cases, such hardware is unavailable to facilitate high-speed
fixation.
An alternative approach is to account for instantaneous rota-

tions in the image domain by tracking the location of the FOE.
Van Leeuwen and Groen [21], [22] consider the use of FOE
tracking to correct for the physical misalignment of the optical
and translational axes as a result of the camera–robot config-
uration. However, while accounting for the constant physical
misalignment of these axes, they do not extend the use of FOE

tracking explicitly to the removal of small frame-to-frame rota-
tional effects during ego-motion, nor do they apply τ directly to
control the vehicle’s velocity. In general, while previous work
has considered the use of FOE tracking for camera stabilisation
during ego-motion, no one has applied such an approach to tasks
requiring fine motion control (such as docking), nor provided a
theoretical analysis supporting the advantages of such a strategy,
and its potential use for control.
In this paper, we present a robust strategy for docking a mo-

bile robot in close proximitywith an upright planar surface using
optical flow field divergence. Unlike previous approaches, we
achieve this without the need for explicit segmentation of the
surface in the image, and using complete gradient-based opti-
cal estimation (i.e., no affine models are used to estimate the
optical flow field) in the control loop. In addition, we require
only a simple proportional control law to regulate the vehicle’s
velocity, using only the unfiltered flow field divergence as an
input. Central to the robustness of our approach is the derivation
of a τ -estimator that accounts for small rotations of the robot
during ego-motion through tracking of the FOE. We provide a
theoretical justification for the constant tracking of the FOE as
a means of accounting for not just the physical misalignment
of the optical and translational axes, but also frame-to-frame
shifts of the optical axis due to instantaneous rotations during
ego-motion. The proposed control is designed for the full dy-
namics of a vehicle, making the results applicable to a wide
range of autonomous robotic vehicles. A simple proportional
feedback, using the computed flow divergence error as the driv-
ing term, is chosen. The control is simple to apply but leads
to singular, non-linear closed-loop dynamics of the vehicle. A
full theoretical analysis is undertaken that proves stability of the
closed-loop system under ideal conditions. We present offboard
and onboard experiments demonstrating the application of this
strategy to the task of docking a mobile robot. Note that this
paper extends preliminary results first presented in [10]. Here,
we provide additional experimental results, and a full analysis
of the system’s closed-loop stability.
The paper is structured as follows. Section II provides the-

oretical background, and the derivation of the proposed FOE-
based τ -estimator outlined earlier. Section III provides analysis
of the technique’s stability for the closed-loop control of a mo-
bile robot during docking. Section IV describes all experiments
conducted, and results achieved. Section V concludes the paper.

II. THEORY

A. Background

Flow divergence is measured by examining the partial spatial
derivatives of image velocity components in orthogonal direc-
tions at a given image location. This measure is commonly
defined as

D(x, y) =
∂u(x, y)

∂x
+

∂v(x, y)
∂y

(1)

where (x, y) is a point in the image, and u and v are the image
velocity components in the x- and y-directions, respectively.
TTC (τ ) to a point along the optical axis of the camera can be
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Fig. 2. Geometric configuration.

measured from flow divergence, and is commonly defined as [3]

τ =
−Z

Tr
=

−2
D(x0 , y0)

(2)

where Z is the distance to the object in the direction of head-
ing, and Tr is the velocity in this direction. Note that for the
typical scenario of a robot approaching a surface, we measure
Z > 0 and Tr < 0, thereby decreasing the value of Z as the
robot approaches. In particular, the divergence D < 0 is nega-
tive for a diverging flow field and τ is defined to be positive.
The aforementioned relationship betweenD and τ assumes that
the heading direction is aligned with the camera’s optical axis,
at the image center (x0 , y0).
Flow divergence is constant across the image plane if the

surface plane is perpendicular to the camera’s optical axis (i.e.,
fronto-parallel with the image plane), and can, therefore, be cal-
culated anywhere in the imaged area of the surface. If precise
fronto-parallel alignment with the docking plane is not main-
tained, then further image deformation is introduced, causing the
measured divergence to vary across the projected surface [20].
Given instantaneous rotations during ego-motion, precise sur-

face alignment is unlikely to exist. In the image domain, such
effects are characterized by frame-to-frame shifts of the FOE,
causing the divergence at any given image location to vary. As
a result, (2) is unlikely to provide an accurate estimate of τ in
the presence of such rotations. To improve τ -estimates during
ego-motion, accounting for rotational effects is essential.

B. Derivation of Proposed Time-to-Contact Estimator

The analysis presented here extends on the geometric mod-
eling used by Santos-Victor and Sandini [15]. As in [15], we
represent the docking surface as a plane in a camera centered
coordinate system:

Z(X,Y ) = Z0 + aX + bY (3)

where Z0 is the distance to the surface along the optical axis,
X and Y represent points on the surface, and a and b give the
slant and tilt with respect to the optical axis. By introducing the
perspective projection equations into (3), the surface plane can
be expressed as a function of the image coordinates (x, y) [14]:

Z(x, y) =
Z0

1 − ax/fx − by/fy
(4)

where fx and fy are focal lengths expressed in pixels.

Given a fixed camera with respect to the robot’s direction of
motion, we represent the translational velocity of the camera Tc

as proportions of the forward translational velocity Tr of the
robot:

Tc = [αTr βTr γTr ] . (5)

The camera’s angular velocity (ωc ) is given by
ωc = [ωx ωy ωz ] (6)

where each component represents rotation about the axis indi-
cated by its subscript. Fig. 2 shows the geometric configuration.
The optical flow induced by the apparent motion of the dock-

ing plane is defined by the well-known equations [15]:

u(x, y) = fx

[
γTr (x/fx − α)

Z(x, y)
+ ωx

xy

fxfy

− ωy

(
1 +

x2

f 2
x

)
+ ωz

y

fy

]
(7)

v(x, y) = fy

[
γTr (y/fy − β)

Z(x, y)
+ ωx

(
1 +

y2

f 2
y

)

− ωy
xy

fxfy
− ωz

x

fx

]
(8)

where u(x, y) and v(x, y) are the horizontal and vertical com-
ponents of motion.
Let us now consider the effects of rotation, causing the FOE to

shift with respect to the optical axis. Let (x′, y′) be an arbitrary
point in the image representing the FOE. We define the depth of
the surface Z(x, y) with respect to the FOE:

Z(x, y) =
Z(x′, y′)

1 − a(x − x′)/fx − b(y − y′)/fy
. (9)

Substituting (9) into (7) and (8), we obtain:

u(x, y) =
γTr (x − fxα)

Z(x′, y′)

[
1 − a(x − x′)

fx
− b(y − y′)

fy

]

+ ωx
xy

fy
− ωy

(
fx +

x2

fx

)
+ ωz

y

fx
(10)

v(x, y) =
γTr (y − fyβ)

Z(x′, y′)

[
1 − a(x − x′)

fx
− b(y − y′)

fy

]

+ ωx

(
fy +

y2

fy

)
− ωy

xy

fx
− ωz

x

fx
. (11)
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Given the optical flow at the FOE is zero, substituting for x = x′

and y = y′ provides the following constraints on the optical flow
at the FOE:

0 =
γTr (x′ − fxα)

Z(x′, y′)
+ ωx

x′y′

fy
−ωy

(
fx +

x′2

fx

)
+ωz

y′

fx
(12)

0 =
γTr (y′ − fyβ)

Z(x′, y′)
+ωx

(
fy +

y′2

fy

)
−ωy

x′y′

fx
−ωz

x′

fx
. (13)

Solving for ωx and ωy , we obtain

ωx =
fy

x′y′

[
γTr

Z(x′, y′)
(x′ − fxα) + ωy

(
fx +

x′2

fx

)
+ ωz

y′

fy

]

(14)

ωy =
1

fxfy(1 + x′2/f 2
x + y′2/f 2

y )

[
Tr

Z(x′,′ y′)

(
x′y′β + fyx

′

+ fxfyα +
fxαy′2

fy

)
− ωz

(
y′ +

y′3

f 2
y
− x2y′

fxfy

)]
. (15)

Taking the partial derivatives of (10) and (11) in their respective
directions, and again substituting for x = x′, y = y′, we obtain
the partial derivatives at the FOE, defined as

∂u

∂x

∣∣∣
foe

=
γTr

Z(x′, y′)

[
1 − a

(
x′

fx
+ α

)]
+ ωx

y′

fy
−ωy

2x′

fx
(16)

∂v

∂y

∣∣∣
foe

=
γTr

Z(x′, y′)

[
1− b

(
y′

fy
+ β

)]
+ωx

2y′

fy
−ωy

x′

fx
. (17)

Summing these, we obtain the flow field divergence at the FOE
(Dfoe):

Dfoe =
−γTr

Z(x′, y′)

[
a

(
x′

fx
+ α

)
+ b

(
y′

fy
+ β

)
− 2

]

+ 3
(

ωxy′

fy
− ωyx′

fx

)
(18)

and from this, we obtain an equation for the relative depth of
the scene point projecting to the FOE:

Z(x′, y′)
Tr

=
γ

Dfoe

[
a

(
x′

fx
+ α

)
+ b

(
y′

fy
+ β

)
− 2

]

− 3Z(x′, y′)
DfoeTr

(
ωxy′

fy
− ωyx′

fx

)
. (19)

Using (14) and (15), we substitute for ωx and ωy in (19), and
thus, remove both rotations from (19) such that

Z(x′, y′)
Tr

=
γ

Dfoe

[
1 + a

(
x′

fx
+ α

)
+ b

(
y′

fy
+ β

)

− 3
γx′

(
−fxα +

(x′fy + fxfyα + x′y′β + y′2fxα/fy)
fy (1+ x′2/f 2

x + y′2/f 2
y )

+
ωzy

′Tr

fyZ(x′, y′)

(
fy +

y′2

fy
− x′2

fx
− 1

))]
. (20)

Notably, the removal of ωx and ωy introduces a term involving
camera roll (ωz ). If required, techniques for roll removal such
as that of Hanada and Enjima [4] can also be applied without
prior knowledge of the rotation.
If Tr is aligned with the FOE, then (20) gives a precise mea-

sure of τ . In the presence of rotations, this assumption is unlikely
to hold. However, considering a docking scenario for a finite-
sized robot, the presence of small instantaneous rotations will
also mean that the precise point of impact is unlikely to be
known. Given that the FOE provides the only location in the
flow field where rotation is accounted for, we can consider (20)
to be a reasonable approximation of τ (referred to as τfoe) under
these conditions.

1) Time-to-Contact for a Ground-Based Mobile Robot:
Consider (20) for the case of a mobile robot, moving on a
ground plane toward a visible planar surface. Given a fixed, ap-
proximately forward facing camera, ωz will be negligible, and
can, therefore, be set to zero. In addition, the camera orientation
parameters with respect to the heading direction α, β, and γ can
also be set to known values (α = β = 0, γ = 1). From these
substitutions, (20) is reduced to

τfoe =
1

Dfoe

[
1+

ax′

fx
+

by′

fy
− 3

(x′2/f 2
x + y′2/fy2 + 1)

]
. (21)

Note that the only potential unknowns in (21) are the surface
orientation parameters a and b. Given some directional control
maintaining an angle of approach with the surface, an upper
and lower bound is likely to exist for the surface orientation
parameters and hence for τfoe.

2) Constraints on Rotation: The requirement for the FOE
to lie within the image plane provides a natural constraint on
the use of (21). Perhaps most important is the limitation this
imposes on the magnitude of rotation allowable. If too large, the
FOE will no longer exist within the image plane.
Let us consider the maximum rotation to be that which causes

the FOE to shift to the edge of the image plane. Let k be the 1-D
shift of the FOE from the image center to the image edge. For
a ground-based robot with forward facing camera, and rotation
only about the Y-axis (ωy ), we consider only horizontal shifts
of the FOE, and thus, rewrite (12) as

Trk

Z(k)
= ωy

(
fx +

k2

fx

)
. (22)

From this, an upper and lower bound on rotation is obtained:

− Trk

Z(k)
(
fx + k2/fx

) ≤ ωy ≤ Trk

Z(k)
(
fx + k2/fx

) . (23)

It can be seen in (23) that as Tr increases, or Z(k) decreases,
the bound on rotation widens. Therefore, Tr/Z must be kept
sufficiently high to ensure that the FOE lies within the image
plane. Naturally, if ωy is sufficiently large with respect to Tr ,
the FOE may not exist.

3) Constraints on Angle of Approach (Surface Orientation):
As mentioned earlier, the surface alignment parameters a and
b in (21) may not be known. However, it is important to note
that the existence of the FOE within the projected surface does
enforce some constraints on the range of possible angles of
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approach. At extreme approach angles, the FOE is unlikely to
exist at all as the distance from the surface becomes infinite
along the axis of motion. Therefore, ensuring that the FOE
always exists within the projected surface target area, it should
maintain an approach angle that is within stability limits. This
may also be used as a means of assessing the achievability of
the task.

III. CLOSED-LOOP ANALYSIS

The goal of this section is to consider the closed-loop behavior
of a vehicle where the control input is generated by proportional
feedback of the flow divergence. The analysis is undertaken
for a full dynamic vehicle model to provide the most general
results. Velocity-controlled mobile robots can be dealt with in
this framework by introducing a virtual dynamic state into the
control law implementation, as is done for the experimental
results that we detail in Section IV. The control is implemented
as proportional feedback of the measured divergence and not
τ to avoid possible ill-conditioning associated with inversion
of a measured variable that may be close to zero. Consider the
system

Ż = Tr , Z(0) = Z0 (24a)

mṪr = F, Tr (0) = T0 (24b)

wherem > 0 is the vehicle mass, F is the force input, Z is the
distance to the wall (assumed to be positive), and Tr is the ve-
locity of the robot orthogonal to the wall. For the purposes of the
theoretical development, we assume a fronto-parallel approach
angle. We discuss the more general case in remarks at the end
of the section.
Let Dref be a constant reference set point for the flow diver-

gence. Recalling (2), if the measured divergence

D(t) =
2Tr (t)
Z(t)

≡ Dref

is exactly equal to the constant reference divergence at all times
along the closed-loop trajectory, then substituting into (24a),
one obtains

Ż =
Dref

2
Z

and hence,

Z(t) = exp
(

Dref t

2

)
Z0 . (25)

Choosing the reference divergence Dref < 0, corresponding to
an expanding image as the robot approaches the wall, it is clear
that Z(t) → 0 exponentially. The velocity Tr (t) is bounded and
also converges to zero exponentially. This result was discussed
in Srinivasan et al. [19] for honeybee landings and has been a
key motivation for most of the TTC based docking and obstacle
avoidance algorithms [1], [3], [13].
In practice, exact tracking of reference divergence is impos-

sible and we propose a proportional feedback control

F = K (Dref − D(t)) . (26)

The feedback F will adjust the velocity Tr to force D(t) to
track the referenceDref. For large gainK � 0, then the relative
tracking errorwill be small and the closed-loop system trajectory
should be close to (25). However, the actual closed-loop system
dynamics are complicated by the nonlinear dependence ofD(t)
on the distance Z(t) (2). Substituting (26) into (24), one obtains

Ż = Tr , Z(0) = Z0 > 0 (27a)

Ṫr =
K

m

(
Dref − 2Tr

Z

)
, Tr (0). (27b)

Here, we demand thatZ0 > 0 is positive in order that the under-
lying physical assumptions in the image model are valid. The
authors have been unable to find an analytic solution to (27);
however, the following theorem proves that its solutions have
the desired qualitative behavior. Note that the 1/Z singularity
in (27b) complicates the analysis considerably at the limit point
Z → 0.

Theorem 3.1: Let (Z(t), Tr (t)) denote the solution of the
closed-loop dynamics (27). Assume that Dref < 0. Then, there
exists a time T > 0, possibly infinite, such that [Z(t), Tr (t)] ex-
ist and are bounded, and Z(t) > 0 for all t ∈ [0, T ). Moreover,
one has

lim
t→T

Z(t) = 0, lim
t→T

Tr (t) = 0.

Proof: The ordinary differential equation (ODE) (27) is
smooth and nonsingular on the domain Z > 0, and hence, there
exists a time T > 0, possibly infinite, such that the solution
(Z(t), Tr (t)) is well defined on t ∈ [0, T ).
First, consider the case where Tr (0) > 0. In this case, the

vehicle is initially moving away from the wall. The control input
(26) is negative for all Tr (t) > 0. Consequently, the velocity
will decrease until Tr = 0 while Z(t) > 0 will increase during
this period and (27) will not pass through a singularity. The
negative driving referenceDref will continue to drive the velocity
negative, and there must be a subsequent time 0 < t0 < T such
that Tr (t0) < 0, Z(tr ) > 0. From this point on, we will ignore
this initial transient and assume without loss of generality that
Z0 > 0 and Tr < 0 in the remainder of the proof.
We continue by proving that if Tr (0) < 0, then Tr (t) < 0

for all t ∈ [0, T ). The proof is by contradiction. Assume the
converse; that is, there exists a first time t1 such that Tr (t1) = 0
and Z(t1) > 0 [the case Z(t1) = 0 while Tr (t1) ≤ 0 is dealt
with later]. Since the solution of (27) is at least C1 at t1 [(27)
is non-singular for Z(t1) > 0], then for all ε > 0 there exists
δ > 0 such that −ε < Tr (t) < 0 for all t ∈ [t1 − δ, t1). Since
Z(t) is monotonic decreasing for Tr < 0, (27b) yields

Ṫr ≤ K

m

(
Dref +

2ε

Z(t1)

)
.

Choosing ε < −Z(t1)Dref/2 shows that Ṫr ≤ 0 on [t1 − δ, t1),
and hence, Tr (t1) < Tr (t1 − δ). This contradicts the assump-
tion. It follows that Tr (t) < 0 on [0, T ) and Z(t) is strictly
monotonic decreasing on the whole interval t ∈ [0, T ).
A similar argument can be used to show that an asymptotic so-

lution such that limt→T Z(t) = Z(T ) > 0 and limt→T Tr = 0
is impossible. The proof is by contradiction. Assuming that such
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a solution exists, then for all ε > 0, there exists a t1 , 0 < t1 < T ,
such that −ε < Tr (t) < 0 for all t ∈ [t1 , T ). Once again, (27b)
yields

Ṫr ≤ K

m

(
Dref +

2ε

Z(T )

)
.

Choosing ε < −Z(T )Dref/2 shows that Tr (T ) < Tr (t1) and
contradicts the assumption that limt→T Tr = 0.
Next, we prove that Tr (t) cannot escape to infinity before

Z(t) → 0. The proof is by contradiction. Assume the converse,
that is, there exists a first time t1 such that limt→t1 Tr = −∞
and Z(t1) > 0. Thus, for allB > 0, there exists δ > 0 such that
Tr (t) < −B for all t ∈ [t1 − δ, t1). Then, (27b) yields

Ṫr >
K

m

(
Dref +

2B

Z(t1 − δ)

)
.

ChoosingB > −Z(t1 − δ)Dref/2 ensures that Ṫr > 0 on [t1 −
δ, t1), and hence, Tr (t1) > Tr (t1 − δ). This contradicts the
assumption and it follows that Tr (t) is well defined for all
Z(t) > 0.
We have shown that Tr (t) can only become unbounded at the

point where Z → 0, and if its limit at this point is well defined,
then it follows that Tr is bounded on [0, T ). Moreover, since
Tr (t) < 0 on the whole interval [0, T ), then the solution of the
ODE is defined for all Z > 0. Since Z is strictly monotonically
decreasing on [0, T ) and cannot have a positive limit, it follows
that limt→T Z(t) = 0.
The final requirement of the proof is to show that

limt→T Tr (t) = 0. To prove this, we compute the first integral
of (27). For Z > 0 and Tr < 0, one has

d

dt
Tr =

dTr

dZ

dZ

dt
=

dTr

dZ
Tr

thus, (27b) may be rewritten as a differential equation in the
variable Z:

dTr

dZ
=

K

mTr

(
Dref − 2Tr

Z

)
, Tr (Z0) < 0. (28)

Furthermore, since Z(t) is monotonic decreasing on the time
interval [0, T )we know that Tr (Z) < 0 for all 0 < Z < Z0 . We
introduce a change of variables s = − log(Z) on 0 < Z < Z0 to
get rid of the singularity in (28). SinceZ(t) is strictly monotonic
decreasing on the interval [0, T ), s := s(t) → +∞ is strictly
monotonic increasing as function of time, and we can think of
s as a pseudo-time variable. Changing variables in (28), one
obtains

dTr

ds
=

2KTr − Ke−sDref

mTr
. (29)

Consider the storage function L = m|Tr |2/2, then

dL
ds

= Tr
dTr

ds
= 2KTr − Ke−sDref ≤ −2K|Tr | + |u(s)|

where u(s) = Ke−sDref is viewed as an exogenous signal.
From [18, Th. 1], it follows that (29) is input-to-state-stable
(ISS). Moreover, since u(s) is a bounded, asymptotically stable
input signal to an ISS system, then lims→+∞ Tr (s) → 0 [17].
This proves that limt→T Tr (t) = 0 and completes the proof. �

The complexity of this proof is associated with the difficult
nature of analyzing singular differential equations. The singu-
larity in (27b) that occurs at Z = 0makes it impossible to apply
standard stability arguments. The approach taken in the proof of
Theorem 3.1 cannot preclude the possibility that convergence
occurs in finite time, an outcome that appears unlikely given the
exponential nature of (25), a limiting solution for the case when
the gain K � 0. The authors believe that for any gain K > 0,
the solution is defined on [0,+∞); however, we do not have a
proof for this result.
Theorem3.1 is proved for the casewhere the robot approaches

the wall fronto-parallel. Let θ be the angle of approach with
respect to the surface normal. In practice, Theorem 3.1 is valid
also for arbitrary constant angle θ < π/2. DefineTz = cos(θ)Tr

to be the component of the robot velocity orthogonal to the wall.
Equation (27b) can be rewritten as

Ṫr =
K

m
(Dref − D(t))

=
1

cos(θ)
cos(θ)K

m

(
Dref − 2 cos(θ)Tr

Z

)
.

Thus, since θ is constant, one has

Ṫz =
K ′

m

(
Dref − 2Tz

Z

)

with a new gain K ′ = cos(θ)K. The dynamics of this system
are equivalent to those studied in Theorem 3.1.
The authors believe that for smoothly time-varying θ, with

bounded derivative, and bounded away from π/2, the system
will have the same qualitative behavior shown in Theorem 3.1.
The bulk of the earlier proof will hold in a straightforward
manner; however, a full analysis is considered beyond the scope
of this paper.
The analysis in this section is undertaken in continuous time

although the real-world control signals will always be applied in
discrete time. For a sufficiently fast time sampling, the discrete
system should inherit the same stability as the continuous-time
system. Characterizing how fast the sampling must be to guar-
antee convergence is beyond the scope of the this paper.

IV. EXPERIMENTAL RESULTS

In this section, we present four sets of experiments demon-
strating the performance of the proposed FOE-based τ -estimator
to the task of docking. We provide results from simulation, off-
board image sequences, and from the technique’s application to
the closed-loop control of a mobile robot performing a docking
manoeuvre. We first describe each experiment and discuss im-
plementation issues relating to the application of the FOE-based
τ -strategy. We then present the results of these experiments.

A. Simulation Experiment

To test the theory, a simulation modeling the motion of a
ground-basedmobile robot, with camera, toward a planar fronto-
parallel surface was conducted. A 2-D motion model was used,
allowing only forward velocity and a single rotation in the
ground plane. As such, only the u component of flow across
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Fig. 3. Sample frames and flow fields from each image sequence used in offboard experiments. (a) Looming wall. (b) Looming bush. (c) Looming bricks. Line
intersections show estimated FOE for frame, and boxes indicate the divergence patch configurations used for FOE-based τ estimation.

a single row of pixels was required to obtain τ -estimates. From
this, a set of sample flow fields was obtained.
For each consecutive sample, the distance to the surface was

decremented by a constant amount. The robot was assumed
to be initially aligned fronto-parallel with the surface before a
constant translational velocity, and randomly selected instanta-
neous rotational velocity was applied to the scene with respect
to the robot’s location. The resulting motion vectors were then
projected onto the robot’s image plane, thereby generating the
expected flow resulting from the robot’s motion with respect to
the scene. From this, the FOE (which shifts as a result of the
rotation) was located, and τ computed using (21).

B. Offboard Time-to-Contact Experiments

1) Indoor Image Sequence: A looming wall sequence was
constructed to simulate the image expansion likely to be expe-
rienced when approaching a textured surface. Fig. 3(a) shows
sample frames from the sequence. In the construction of the
image sequence, the camera was moved 3 cm per frame toward
a heavily textured, approximately fronto-parallel wall. Optical
flow fields were estimated for each frame of the sequence, and
from this, τ -estimates obtained.
Flow divergence was estimated using four patches in the im-

age, each centered on a distance of 12 pixels from the FOE, and
each at 45◦ from the horizontal and vertical axes that intersect
at the FOE. Fig. 3(a) shows this patch configuration. For com-
parison, τ was also estimated by placing the four patches about
the image center.

2) Outdoor Image Sequences: To test the technique’s ro-
bustness under more natural conditions, two outdoor image se-
quences were constructed, depicting the motion of the camera
toward different, more natural surfaces. Fig. 3(b) and (c) shows
sample frames from both sequences: the looming bush sequence
and the looming bricks sequence. Both sequences depict the mo-
tion of a camera (attached to the front of a bicycle and walked)
at an approximately constant velocity toward each respective
surface. The camera’s motion was subject to rotations induced
by the uneven terrain (grass) and small adjustments of the bi-

Fig. 4. Setup for onboard docking tests.

cycle’s heading (including camera roll). The initial distance in
both sequences was 9 m. The average velocity of the camera
depicted in the looming bush sequence is approximately 13 cm
per frame (6 km/h), and 20.5 cm per frame (8.5 km/h) for the
looming bricks sequence.
Flow divergence was estimated from optical flow vectors

within a single 51 × 51 pixel patch centered on the estimated
location of the FOE. Divergence was also measured at the image
center using the same patch size.

C. Onboard Docking Experiment

To test the robustness of the FOE-based τ -measure, the tech-
nique was integrated into a simple closed-loop docking behavior
for velocity control of a mobile robot. In the experiment, a robot
with a single, fixed, forward facing camera approached a heavily
textured, roughly fronto-parallel wall, attempting to decelerate
and safely stop as close to the wall as possible without collision.
Fig. 4 shows the experimental workspace.
The robot used is velocity controlled, that is, the control signal

is passed to a servo motor that controls the rolling speed of the
drive wheels. Initial experimental tests showed that direct pro-
portional feedback of the drive wheels lead to highly aggressive
control action due to the noise in the divergence measure. By
incorporating a virtual model of robot dynamics in the control
design, the closed-loop behavior of the vehicle was smooth and
well conditioned. The discrete-time realization of the proposed
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control law is

vt = Δvt−1 +
ΔKp

m
(Dref − Dt) (30)

where v(t) is the velocity control input at time t, Δ is the dis-
cretisation time,m is a virtual vehiclemass,Kp is a proportional
gain,Dt is the most recent flow divergence estimate, andDref is
the reference set point for flow divergence (ΔKp/m = 0.0325
and Dref = 0.022 for these trials). Along with the discrete-time
kinematics,

zt = Δvt−1 . (31)

Flowdivergencewas estimated using two 40× 40 pixel image
patches, each placed at 45◦ on either side of the vertical axis
passing through the FOE, and each centered on a distance of 25
pixels from the FOE. The patches were placed only above the
FOE to avoidmeasuring divergence on the imaged ground plane.
Reasons for the variation of patch size and configuration used in
the offboard experiment were based on empirical observations
of performance onboard. Due to the noisier conditions onboard,
larger patch sizes were used to obtain a more robust estimate of
flow divergence during ego-motion. In general, a range of patch
sizes and configurations was found to obtain strong results.

D. Optical Flow and FOE Estimation

Throughout the experiments, Lucas and Kanade’s [8]
gradient-based method was applied. This technique was cho-
sen based on strong performances in a recent comparison of
optical flow techniques for robot navigation tasks [9]. For the
indoor looming wall sequence, a standard implementation of
Lucas and Kanade’s algorithm was applied, and flow vectors
were obtained for all image points. Due to significantly larger
flow experienced in both outdoor sequences, a pyramidal im-
plementation of Lucas and Kanade’s technique was applied. To
offset the increased computation load of this approach, flow
vectors were only estimated for every fifth pixel.
In all experiments, the FOE was calculated using a simple

algorithm that requires the imaged surface to occupy the entire
viewing field (or at least, the section of the viewing field for
which the FOE is expected to lie within). To obtain x′, each row
in the image was used to count the number of positive and neg-
ative horizontal flow components, which were then differenced,
and averaged over all rows to locate the overall zero point for
x. The algorithm was applied similarly to obtain y′, using the
signs of vertical components of flow. While more sophisticated
algorithms for locating the FOE do exist, it is important to note
that in many cases, pure (or close to pure) translational motion
is assumed (e.g., [5], [11], and [16]). In contrast, the technique
applied here provides a relatively high tolerance to rotation, such
that the FOE will always be located so long as it lies within the
imaged area, and other local minima in the flow field do not
exist. Given only the sign of flow vectors are used to estimate
the FOE, the computation associated with its estimation is neg-
ligible in comparison with the flow estimation itself. It should
be noted that other suitable techniques do exist, such as [7], that
do not require the segmentation of the object surface area. The

Fig. 5. Simulation results compare our FOE-based τ -estimator (21), with τ -
estimates obtained at the image center using (2) for the simulated 2-Dmotion of a
ground-basedmobile robot translating at constant speed toward a fronto-parallel,
planer surface. For each sample, the robot’s forward speed, and randomly chosen
instantaneous rotational velocity (−0.1 ≤ ωy ≤ 0.1) were used to compute the
corresponding horizontal flow. From this, τ -estimates were obtained. Ground
truth shows the exact τ for each sample, given the robot’s forward velocity and
distance from the surface. For all samples, the camera’s focal length is set to
188 pixel.

algorithm employed here was chosen primarily for its efficiency
in achieving reasonably accurate FOE estimates.

E. Results

1) Simulation Results: Fig. 5 gives the simulation results,
showing a direct comparison of τ obtained using the FOE-
based estimator defined by (21), and estimates obtained from
the measured divergence at the image center [using (2)]. Ground
truth τ is also provided, computed from the robot’s distance from
the surface and its known constant forward velocity toward the
surface. It can be seen that the FOE-based τ -measure closely
reflects ground truth. Small discrepancies between the FOE-
based measure and ground truth are the result of unavoidable
quantization errors in the image, disallowing the precise location
of the FOE.
In contrast, τ -estimates taken along the optical axis exhibit

significant fluctuation compared with that obtained at the FOE.
It is also evident that the image center always provides an over
estimate of τ , a result of the optical axis deviating from its
fronto-parallel alignment with the surface. While errors in τ
are reduced as the distance to the surface approaches zero, it is
important to note that this is due to the robot’s constant velocity
toward the surface. As the surface draws near, the translational
flow increases, thereby diminishing the effects of the robot’s
rotation in the flow field.

2) Indoor Image Sequence Results: Fig. 6(a) shows τ -
estimates for each frame of the indoor looming wall sequence
for the FOE-based, and image-center-based strategies. Ground
truth τ is also shown, obtained from the camera’s known
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Fig. 6. τ -estimates for (a) indoor looming wall sequence, (b) looming bush
sequence, and (c) looming bricks sequence.

velocity, and a best linear fit over τ -measures obtained from
ground truth flow fields constructed from camera calibration.
From these results, a significant improvement in the consis-

tency of τ -estimates is achieved when divergence is calculated
with respect to the FOE. Of particular note, the FOE-based
strategy achieves a close match with ground truth from the
15th frame onward. In contrast, the image-center-based method

consistently overestimates τ , and exhibits larger fluctuations
across the sequence.

3) Outdoor Image Sequence Results: Fig. 6(b) and (c) shows
τ -estimates for both outdoor image sequences, again comparing
the FOE-based and image-center-based strategies.
As with the indoor looming wall sequence, improvements

in τ -estimation are achieved by the FOE-based strategy as the
surface approaches. This is evident from frame 40 onward for
the looming bush sequence, and from frame 20 in the looming
bricks sequence.
Across all sequences, larger fluctuations are evident in early

frames for both strategies. This is unsurprising given the flow
due to camera translation is unlikely to be large enough to be
reliably measured at this distance from the wall. It is also likely
that the FOE is poorly defined at this distance. In early frames
of both outdoor sequences, the FOE’s location was observed
to shift significantly, and in some cases (particularly for the
looming bush sequence), fall outside the imaged area of the sur-
face. However, as divergence increases the FOE-based strategy
quickly stabilizes, and begins to outperform the image-center-
based estimator.
In addition to rotational effects, the FOE-based strategy was

observed to provide increased robustness to flowexceedingmea-
surable levels in each sequence. This effect is evident in flow
fields shown in the bottom row of Fig. 3, where peripheral flow
vectors become noisy and unreliable. While generally only in
the periphery, this region of flow becomes larger as Tr/Z in-
creases (i.e., Z → 0). As a result, any shifting of the FOE when
in close proximity to the surface may cause this region to in-
habit image-center-based divergence patches. This is the likely
cause of larger fluctuations in image-center-based τ -estimates
in the later frames of each sequence (particularly for the loom-
ing bricks sequence, where forward velocity was significantly
faster). In contrast, τ -estimates taken with respect to the FOE
remain stable under these conditions, and in accordance with
simulation results, appear to improve in consistency as Z de-
creases. This improvement also appears to result from the FOE
itself being more clearly defined, and therefore, more accurately
located when Tr/Z is large.

4) Onboard Docking Results: Six trials of the FOE-based
docking strategy were conducted, and data recorded. Fig. 7
shows the velocity–distance profiles and the plotted approach
of the robot toward the surface for each trial. Also shown is
the theoretically expected velocity–distance profile based on
the integration of (27) in discrete time for the initial velocity,
distance, and tuning parameter values used in the trials. Of the
six trials conducted, the FOE-based strategy docked in close
proximity to the surface five times without collision. Only one
collision, trial 2, was observed. Results shown in Fig. 7 suggest
this was most likely due to noise affected divergence estimates
obtained around 30 cm from the surface.
Among the successful trials, close proximity stopping dis-

tances were achieved with surprisingly high consistency.
Recorded velocity–distance profiles and stopping distances also
appear consistent with theoretical expectation. Notably, results
show an early lack of response compared with the predicted de-
celeration. This is a likely result of divergence being too small
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Fig. 7. Onboard docking results showing (a) velocity–distance profiles, and (b) plotted paths of the robot for each trial.

to measure at such distances. As the robot approaches, the mea-
sured divergence increases, and the velocity–distance profiles
begin to resemble theoretical expectations. The average stop-
ping distance achieved over the successful trials was 6 cm with
the furthest distance recorded being just 7 cm. This consistency
in stopping distance is encouraging when considering the sim-
ple control law used, and significant differences in the plotted
approach path of the robot during each trial. Fig. 7(b) shows con-
siderable variation in both the robot’s initial starting position,
and the extent (and direction) of the lateral drift experienced
during each approach.
An attempt was made to compare the FOE-based onboard

control scheme with the same control scheme using an image-
center-based divergence measure. However, the raw divergence
estimates obtained at the image center were found to be unwork-
able for the simple proportional control scheme used. A large
range of tuning parameter values were explored.
The FOE-based docking strategy compares well with previ-

ouswork in the flow-based docking. The final stopping distances
achieved are a significant improvement on Questa et al. [13]
(approximately 15 cm), and comparable with Santos-Victor and
Sandini [15]. Unlike previous work, we report highly consistent
results over a set of trials. In addition, we obtain these results us-
ing general optical flow estimation (no affine approximations),
and without filtering of the divergence estimates. However, we
acknowledge that we are using newer and faster computers than
in previous work, thus allowing faster estimation of the optical
flow.

V. CONCLUSION

This paper has presented a mobile robot docking strategy that
utilizes a TTC (τ ) estimation that is robust to noisy, instanta-
neous rotations induced by robot ego-motion. We have shown
that through tracking the focus of expansion in the optical flow
field, small rotations of the camera and misalignments of the
optical and translational axes can be accounted for by calculat-
ing flow divergence with respect to the FOE. In this way, the
effects of the rotation are effectively canceled out, and improved
accuracy and stability is achieved. Based on this, we have pro-
posed a divergence-based control law for docking a robot with

near fronto-parallel surfaces with closed-loop analysis proving
its stability under ideal conditions, verified also through exper-
imental trials. These results show a significant improvement in
τ -estimates when compared with common strategies that take
no account of the shifting FOE during robot ego-motion. The ac-
curacy and stability achieved using the FOE-based τ -estimator
was demonstrated to be sufficient for fine motion control of a
mobile robot when in close proximity with the docking surface.
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